

Accelerating the next technology revolution

Systematic Study of New Chemistries For EUV Mask Cleaning

Ruhai Tian, Abbas Rastegar, Matthew House

10/01/2012

Outline

- EUV mask structure and contamination
- Introduction of conventional cleaning chemistry
- Issues of EUV mask cleaning with conventional chemistry
- Screening of chemicals used for surface cleaning
- Evaluation of EKC 830 for Ru/ML cleaning
- Conclusions
- Future work

EUV mask structure and working principle

Contamination of EUV masks

- 1. Can be contaminated in air, N₂, and vacuum and during storage, handling, and production
- 2. Can be contaminated by organic and inorganic materials (metal, oxide, etc.)
- 3. Carbon is one of the main components; it has many allotropes
- 4. Every 1 nm C deposition results in a 1% EUV reflectivity drop; nanoparticles can be printed on the wafer

Carbon chemistry

Mechanism for carbon removal

Physical stacking Embedding

Chemical bond

Electrostatic interaction

Approaches to remove carbon

- ☐ Can be oxidized to get volatile molecule pieces
- □ Can be oxidized to get soluble molecules R₂-C=O, R-C-OOH, CO₂
- □Some chemical bonds can be hydrolyzed under an acid or base condition (e.g., ester groups)
- □ Surface charge of the carbon surface can be tuned by acid/base or surfactant
- ☐ They show different solubility in different solvents

Pourbaix diagram of Ru vs. C (graphite)

- 1. The Ru layer is more stable when an oxidant is used under acidic conditions
- 2. Ru has a larger stability window than graphite

Conventional cleaning chemistry (RCA)

<u>SEMATECH</u>	/
leaning Purpose	

Chemical formulation	Composition	Temperature	Cleaning Purpose
Piranha (SPM)	H ₂ SO ₄ :H ₂ O ₂ =2:1 to 4:1	80-130 °C	Organic
SC1 (APM)	NH ₄ OH:H ₂ O ₂ :H ₂ O=1:1:5 to 1:2:7	75-85 °C	Organic & metal
SC2 (HPM)	HCl:H ₂ O ₂ :H ₂ O=1:1:6 to 1:2:8	75-85 °C	Oxide
Ozonated DI water	6-120 ppm	Room	Organic
BHF (BOE)	NH4F (40 wt%):HF (49 wt%)=7:1	Room	Oxide (SiO ₂)

Cleaning mechanism

<u>SPM and DI-O₃</u>: generation of oxygen radicals and oxidation reaction

$$C > C = C < + 0^{\bullet} \longrightarrow C > C = 0 + 20^{\bullet} \longrightarrow C = 0$$

<u>SC1</u>: oxidation, reaction, etching, and metal-NH₃ complex formation

SC2: reaction of base/oxide with acid

BOE: reaction and etching

Compatibility of conventional chemistries for EUV mask cleaning

Chemical	Purpose	Disadvantages		
		Particle adders		
SPM (Piranha)	Particle removal	Etch TaN and CrN materials		
	Organic removal	Hard to remove inorganic carbon		
		Surface contamination by S		
Ozone	Organic removal	Surface oxidation		
SC1	Particle removal	Poor performance for stable organics		
3C1	Organic removal	Poor performance for stable organics		
SC2	N/A	Etch metal		
BHF (BOE)	Oxide removal	Etch TaN, CrN		

New chemistries for EUV masks

- Remove particles Remove organics
- □ No reflectivity loss (contamination; surface oxidation); no CD loss; no particle deposition
- ☐ Easy to use; compatible with tool materials

Oxidants	Strong acids	Strong bases	Polar Solvents	Surfactant
O ₃ (H+)	HCl (12 M)	EKC 830	IPA	0.1M SOD
H ₂ O ₂ (H ⁺)	NCW1002	КОН	Acetone	0.01M SOD
0.1M KMnO ₄	HF	28-30% NH4OH	DMSO	
O ₂ (H+)		0.1M KOH	DMF	
I ₂		5% NH4OH	NMP	
O ₂ (H ₂ O)		PG remover	DI	
96% H ₂ SO ₄		Bleach		
SPM		EKC 265		
Aqua fortis				

Numerous chemical screenings!

A simple way to simulate EUV carbon deposition—candle black deposition

☐The same element composition, i.e.,

XPS results by Iwao Nishiyama et al., Feb, 26, 2007 IUEVI Optics Contamination, San Jose

Candle black

☐Similar depth profiles

H, O, Si

TOF SIMS results by Sematech

VS.

Days vs. Minutes

Chemical screening chart

				20 °C	50 °C*	100 °C*	Rolling	Reflectivity	Substrate etch	MATE
	Chemical	E ⁰	рН		30 mins		30 mins	loss** (%)	(Macro scale)	VIAIL
	O ₃ (H+)	2.08V	-	-	-	-	-	>3%	Surface oxidation	
	$H_2O_2(H^+)$	1.78V	-	-	-	-	-	-	No etch	
	0.1M KMnO4	1.51V (H ⁺)	8.75	N	N	N	N	1.01	Etch ML and CrN	
	O ₂ (H+)	1.23V	-	-	-	-	-	-	No etch	
Oxidants	I ₂	0.54V	-	N	-	-	-	-	No etch	
Oxidants	O ₂ (H ₂ O)	0.4V	-	N	N	N	N	-	No etch	
r	96% H ₂ SO ₄	0.16V	-	N	-	-	-	-	No etch	
Strong acids	SPM	-	-2.00	-	-	Y+++	-	-	No etch	
	Aqua fortis	-	-1.09	N	-	N	-	1.01	No etch	1
•	HCl (12 M)	-	-1.10	N	-	-	-	-	No etch	
	NCW1002	-	3.28	-	-	Y+	-	-	No etch	
	HF								Etch ML and CrN	
	EKC 830	-	14.37	Y++++	-	Y++++	-	0.94	No etch	i
	КОН		13.80	Y+++					No etch	
	28-30% NH ₄ OH		13.77	N	-	-	-		No etch	
	0.1M KOH	-	12.75	-	-	Y++++	-	-	No etch	
Strong bases	5% NH₄OH	-	12.00	-	-	-	Y++++	-	No etch	
_	PG remover	-	11.82	Y+	Υ++	-	-	-	No etch	
	Bleach		11.73	Y++++			-	>3%	Etch ML	
	EKC 265	-	11.70	-	-	Y+++	-	0.32	No etch	
	SC1			N			-	-	No etch	
	IPA	-	-	N	-	-	-	-	No etch	1
Polar Organic	Acetone	-	-	Y+	-	-	-	1.01	No etch	
solvents and	DMSO	-	-	N	Y++	Y+++	-	-	No etch	
	DMF	-	-	-	Y+++	-	-	-	No etch	
DI	NMP	-	-	-	-	Y++	-	-	No etch	
	DI			N	N	N	N	0	No etch	
Surfactant	0.1M SOD		6.49	Y++++	-	-	-	0.14	No etch	
	0.01M SOD		6.49	Y++++				_	No etch	

^{*} The temperature is measured on hotplate a surface ** EUV reflectivity loss after immersion for one hour

Candle black cleaning with different chemicals at room temperature for 30 minutes

SDS: Sodium dodecyl sulfate; PG remover and EKC 830 are commercially available

Candle black cleaning with different chemicals at higher temperature for 30 minutes (plate 100 °C)

EKC 265, NCW 1002, PG remover, and EKC 830 are commercially available

Chemicals vs. cleaning effect & reflectivity

Carbon removal efficiency

Chemical-induced EUV reflectivity loss

Formulation of EKC 830 and effect on blank reflectivity

$$CH_3$$

n-Methylpyrrolidone (NMP)

2-(2-Aminoethoxy)ethanol

. . .

Unknown parts

- ☐ Strong base: pH 14.3
- □ Polar solvent: NMP
- □ Surfactants: ?

Compatibility of mask material with EKC 830

EKC 830 treatment degrades EUV reflectivity but it is recoverable

Material compatibility with EKC 830

- □ EKC830 does not etch the multilayer structure
- ■No etching of absorber material (TaN) was observed when 100 nm nanopattern features are used for testing

Influence of EKC 830 treatment on surface

roughness

Chemical	Rq (nm)	Ra (nm)	Rmax (nm)
Reference	0.126	0.093	1.160
EKC 830	0.112	0.080	0.963

No effect on Ru-capped ML roughness

Conclusions

- Different types of chemicals/formulations have been screened.
- 2. Among all chemistries, according to the screening results, a formulation of base, surfactant, and polar solvent is able to remove carbon contamination with little influence on EUV reflectivity.
- 3. The best carbon removal was observed with chlorine chemistry under a base condition. However the ML structure can be damaged.
- 4. Further tests will be tried with reduction chemistry.

Acknowledgements

SEMATECH technical support:

Lenny Gwenden

Nancy Lethbridge

Edward Maillet

Patrick Kearney

Andy Ma

Teki Ranganath

Alin Antohe

Vibhu Jindal

Chemical formulations from EKC technology

Questions?

